What is baryonic matter and what is its percentage in universe?

The visible universe—including Earth, the sun, other stars, and galaxies—is made of protons, neutrons, and electrons bundled together into atoms. Perhaps one of the most surprising discoveries of the 20th century was that this ordinary, or baryonic, matter makes up less than 5 percent of the mass of the universe.

Where is most of the baryonic matter found?

Only about 10% of baryonic matter is in the form of stars, and most of the rest inhabits the space between galaxies in strands of hot, spread-out matter known as the warm-hot intergalactic medium, or WHIM.

What is cold dark matter composed of?

Most dark matter is thought to be non-baryonic; it may be composed of some as-yet-undiscovered subatomic particles. The primary candidate for dark matter is some new kind of elementary particle that has not yet been discovered, particularly weakly interacting massive particles (WIMPs).

What is an example of baryonic dark matter?

Baryonic dark matter may occur in non-luminous gas or in Massive Astrophysical Compact Halo Objects (MACHOs) – condensed objects such as black holes, neutron stars, white dwarfs, very faint stars, or non-luminous objects like planets and brown dwarfs.

What is all matter in the universe composed of?


What is baryonic and non-baryonic matter?

Nearly all matter that may be encountered or experienced in everyday life is baryonic matter, which includes atoms of any sort, and provides them with the property of mass. Non-baryonic matter, as implied by the name, is any sort of matter that is not composed primarily of baryons.

What particles are baryons?

Baryons are heavy subatomic particles that are made up of three quarks. Both protons and neutrons, as well as other particles, are baryons. (The other class of hadronic particle is built from a quark and an antiquark and is called a meson.)

What is matter made of?

At the most fundamental level, matter is composed of elementary particles known as quarks and leptons (the class of elementary particles that includes electrons). Quarks combine into protons and neutrons and, along with electrons, form atoms of the elements of the periodic table, such as hydrogen, oxygen, and iron.